Skip to main content
Chemistry LibreTexts

1: The simplest chemical bond: The \(H_2^+\) Ion

  • Page ID
    20848
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    The \(H_2^+\) molecule ion is an example of a simple one-electron problem that can be solved exactly and leads to the energy eigenfunctions associated with an actual chemical bond. In fact, this molecule is the only one for which analytical solutions are known. The actual solution is complicated, so we will not carry it out to completion, but here we will outline how it is done:

    Setting up the Hamiltonian

    H2+ consists of two protons and one electron. Choose a coordinate system as follows:

    Text Box: x

    File:/C:\Users\DELMAR~1\AppData\Local\Temp\msohtmlclip1\01\clip_image002.gif

    File:/C:\Users\DELMAR~1\AppData\Local\Temp\msohtmlclip1\01\clip_image004.gif

    r

    .

    File:/C:\Users\DELMAR~1\AppData\Local\Temp\msohtmlclip1\01\clip_image006.gif

    File:/C:\Users\DELMAR~1\AppData\Local\Temp\msohtmlclip1\01\clip_image008.gif

    +

    .

    File:/C:\Users\DELMAR~1\AppData\Local\Temp\msohtmlclip1\01\clip_image010.gifz

    File:/C:\Users\DELMAR~1\AppData\Local\Temp\msohtmlclip1\01\clip_image011.gif

    File:/C:\Users\DELMAR~1\AppData\Local\Temp\msohtmlclip1\01\clip_image012.gif

    y

    File:/C:\Users\DELMAR~1\AppData\Local\Temp\msohtmlclip1\01\clip_image013.gif

    Here, r denotes the position of the electron. For now we will assume that the protons remain fixed in space with a distance R between them. The coordinate system is chosen so that both protons lie on the z-axis.

    Proton positions are File:/C:\Users\DELMAR~1\AppData\Local\Temp\msohtmlclip1\01\clip_image015.gif, File:/C:\Users\DELMAR~1\AppData\Local\Temp\msohtmlclip1\01\clip_image017.gif

    File:/C:\Users\DELMAR~1\AppData\Local\Temp\msohtmlclip1\01\clip_image019.gif File:/C:\Users\DELMAR~1\AppData\Local\Temp\msohtmlclip1\01\clip_image021.gif

    Hence, the Hamiltonian is:

    File:/C:\Users\DELMAR~1\AppData\Local\Temp\msohtmlclip1\01\clip_image023.gif

    Eigenfunctions of H satisfy

    File:/C:\Users\DELMAR~1\AppData\Local\Temp\msohtmlclip1\01\clip_image025.gif

    File:/C:\Users\DELMAR~1\AppData\Local\Temp\msohtmlclip1\01\clip_image027.gif

    The potential

    File:/C:\Users\DELMAR~1\AppData\Local\Temp\msohtmlclip1\01\clip_image029.gif

    is not a central-symmetric potential. Hence,

    File:/C:\Users\DELMAR~1\AppData\Local\Temp\msohtmlclip1\01\clip_image031.gif

    so angular momentum is not conserved. But we do have cylindrical symmetry about the z-axis. Hence, the z-component of angular momentum is a constant of the motion and can be shown to satisfy:

    File:/C:\Users\DELMAR~1\AppData\Local\Temp\msohtmlclip1\01\clip_image033.gif

    File:/C:\Users\DELMAR~1\AppData\Local\Temp\msohtmlclip1\01\clip_image035.gif

    Therefore, eigenfunctions of H are also eigenfunctions of File:/C:\Users\DELMAR~1\AppData\Local\Temp\msohtmlclip1\01\clip_image037.gif.

    Recall File:/C:\Users\DELMAR~1\AppData\Local\Temp\msohtmlclip1\01\clip_image037.gif can be defined in terms of an angle File:/C:\Users\DELMAR~1\AppData\Local\Temp\msohtmlclip1\01\clip_image040.gif about the z-axis. Text Box: x

    File:/C:\Users\DELMAR~1\AppData\Local\Temp\msohtmlclip1\01\clip_image042.gif
    File:/C:\Users\DELMAR~1\AppData\Local\Temp\msohtmlclip1\01\clip_image043.gif

    File:/C:\Users\DELMAR~1\AppData\Local\Temp\msohtmlclip1\01\clip_image004.gif

    .

    File:/C:\Users\DELMAR~1\AppData\Local\Temp\msohtmlclip1\01\clip_image045.gif

    +

    .

    File:/C:\Users\DELMAR~1\AppData\Local\Temp\msohtmlclip1\01\clip_image010.gifz

    +

    File:/C:\Users\DELMAR~1\AppData\Local\Temp\msohtmlclip1\01\clip_image011.gif

    File:/C:\Users\DELMAR~1\AppData\Local\Temp\msohtmlclip1\01\clip_image012.gif

    y

    File:/C:\Users\DELMAR~1\AppData\Local\Temp\msohtmlclip1\01\clip_image013.gif

    That is, the angle is defined as the angle between the projection of the vector r onto the x-y plane and the positive x-axis.

    File:/C:\Users\DELMAR~1\AppData\Local\Temp\msohtmlclip1\01\clip_image047.gif

    Eigenfunctions satisfy

    File:/C:\Users\DELMAR~1\AppData\Local\Temp\msohtmlclip1\01\clip_image049.gif

    File:/C:\Users\DELMAR~1\AppData\Local\Temp\msohtmlclip1\01\clip_image051.gif

    File:/C:\Users\DELMAR~1\AppData\Local\Temp\msohtmlclip1\01\clip_image053.gif

    However, periodicity in the angle φ requires

    File:/C:\Users\DELMAR~1\AppData\Local\Temp\msohtmlclip1\01\clip_image055.gif

    File:/C:\Users\DELMAR~1\AppData\Local\Temp\msohtmlclip1\01\clip_image057.gif

    File:/C:\Users\DELMAR~1\AppData\Local\Temp\msohtmlclip1\01\clip_image059.gif

    which is true only if

    File:/C:\Users\DELMAR~1\AppData\Local\Temp\msohtmlclip1\01\clip_image061.gif

    File:/C:\Users\DELMAR~1\AppData\Local\Temp\msohtmlclip1\01\clip_image063.gif File:/C:\Users\DELMAR~1\AppData\Local\Temp\msohtmlclip1\01\clip_image065.gif

    indicating that the eigenvalues of Lz are discrete multiplies of ħ

    File:/C:\Users\DELMAR~1\AppData\Local\Temp\msohtmlclip1\01\clip_image067.gif

    In addition, the eigenfunctions are required to be properly normalized, hence:

    File:/C:\Users\DELMAR~1\AppData\Local\Temp\msohtmlclip1\01\clip_image069.gif

    File:/C:\Users\DELMAR~1\AppData\Local\Temp\msohtmlclip1\01\clip_image071.gif File:/C:\Users\DELMAR~1\AppData\Local\Temp\msohtmlclip1\01\clip_image073.gif

    File:/C:\Users\DELMAR~1\AppData\Local\Temp\msohtmlclip1\01\clip_image075.gif

    We still need two other coordinates to specify the wave function.

    We cannot use the spherical coordinates File:/C:\Users\DELMAR~1\AppData\Local\Temp\msohtmlclip1\01\clip_image077.gifbecause we do not have a central potential, i.e. one that only depends on the distance of the electron from the origin. Rather, the potential for the H2+ molecule ion depends on the distance of the electron from two points representing the two protons.

    We cannot take advantage of cylindrical coordinates because the potential is not a single function of those coordinates.

    Such problems can be treated using confocal elliptic coordinates defined as follows

    File:/C:\Users\DELMAR~1\AppData\Local\Temp\msohtmlclip1\01\clip_image081.gif File:/C:\Users\DELMAR~1\AppData\Local\Temp\msohtmlclip1\01\clip_image083.gif

    in terms of r this is

    File:/C:\Users\DELMAR~1\AppData\Local\Temp\msohtmlclip1\01\clip_image085.gif

    File:/C:\Users\DELMAR~1\AppData\Local\Temp\msohtmlclip1\01\clip_image087.gif


    Solving for ra and rb gives

    File:/C:\Users\DELMAR~1\AppData\Local\Temp\msohtmlclip1\01\clip_image089.gif

    File:/C:\Users\DELMAR~1\AppData\Local\Temp\msohtmlclip1\01\clip_image091.gif

    Hence, the potential becomes:

    File:/C:\Users\DELMAR~1\AppData\Local\Temp\msohtmlclip1\01\clip_image093.gif

    We can also derive an expression for Ñ2 can also be derived in terms of m, n and φ via the chain rule:

    File:/C:\Users\DELMAR~1\AppData\Local\Temp\msohtmlclip1\01\clip_image095.gif

    File:/C:\Users\DELMAR~1\AppData\Local\Temp\msohtmlclip1\01\clip_image097.gif

    etc.

    We find:

    File:/C:\Users\DELMAR~1\AppData\Local\Temp\msohtmlclip1\01\clip_image099.gif

    The Schrödinger (eigenvalue) equation becomes:

    File:/C:\Users\DELMAR~1\AppData\Local\Temp\msohtmlclip1\01\clip_image101.gif

    Write

    File:/C:\Users\DELMAR~1\AppData\Local\Temp\msohtmlclip1\01\clip_image103.gif

    File:/C:\Users\DELMAR~1\AppData\Local\Temp\msohtmlclip1\01\clip_image105.gif

    Multiply through by File:/C:\Users\DELMAR~1\AppData\Local\Temp\msohtmlclip1\01\clip_image107.gif

    File:/C:\Users\DELMAR~1\AppData\Local\Temp\msohtmlclip1\01\clip_image109.gifFile:/C:\Users\DELMAR~1\AppData\Local\Temp\msohtmlclip1\01\clip_image111.gif

    File:/C:\Users\DELMAR~1\AppData\Local\Temp\msohtmlclip1\01\clip_image113.gif

    If we let

    File:/C:\Users\DELMAR~1\AppData\Local\Temp\msohtmlclip1\01\clip_image115.gif

    then, the equation separates:

    File:/C:\Users\DELMAR~1\AppData\Local\Temp\msohtmlclip1\01\clip_image117.gif

    File:/C:\Users\DELMAR~1\AppData\Local\Temp\msohtmlclip1\01\clip_image119.gif

    File:/C:\Users\DELMAR~1\AppData\Local\Temp\msohtmlclip1\01\clip_image121.gif

    Let

    File:/C:\Users\DELMAR~1\AppData\Local\Temp\msohtmlclip1\01\clip_image123.gif

    File:/C:\Users\DELMAR~1\AppData\Local\Temp\msohtmlclip1\01\clip_image125.gif

    The equation is now separable in m and n. Hence, we can choose:

    File:/C:\Users\DELMAR~1\AppData\Local\Temp\msohtmlclip1\01\clip_image127.gif

    Also, write

    File:/C:\Users\DELMAR~1\AppData\Local\Temp\msohtmlclip1\01\clip_image129.gif

    File:/C:\Users\DELMAR~1\AppData\Local\Temp\msohtmlclip1\01\clip_image131.gif

    Hence, substitution of the separable form into the equation gives

    File:/C:\Users\DELMAR~1\AppData\Local\Temp\msohtmlclip1\01\clip_image133.gif

    File:/C:\Users\DELMAR~1\AppData\Local\Temp\msohtmlclip1\01\clip_image135.gif

    The constant A reflects the fact that the left side is a function of m alone while the right side is a function of n alone. Since they are equal to each other, they must both be equal to the same constant A. The constant A is known as the separation constant.

    Hence, we arrive at two equations for the functions M and N:

    File:/C:\Users\DELMAR~1\AppData\Local\Temp\msohtmlclip1\01\clip_image137.gif

    File:/C:\Users\DELMAR~1\AppData\Local\Temp\msohtmlclip1\01\clip_image139.gif

    We need to solve these equations for File:/C:\Users\DELMAR~1\AppData\Local\Temp\msohtmlclip1\01\clip_image141.gif and File:/C:\Users\DELMAR~1\AppData\Local\Temp\msohtmlclip1\01\clip_image143.gif and obtain conditions on allowed values of P (meaning E) and A.

    The conditions on P and A will lead to two new quantum numbers denoted File:/C:\Users\DELMAR~1\AppData\Local\Temp\msohtmlclip1\01\clip_image145.gif and n so that

    File:/C:\Users\DELMAR~1\AppData\Local\Temp\msohtmlclip1\01\clip_image147.gif

    However, unlike for hydrogen, there is no nice, simple closed-form expression, only implicit equations.

    Solutions are of the form

    File:/C:\Users\DELMAR~1\AppData\Local\Temp\msohtmlclip1\01\clip_image149.gif

    File:/C:\Users\DELMAR~1\AppData\Local\Temp\msohtmlclip1\01\clip_image151.gif

    where

    File:/C:\Users\DELMAR~1\AppData\Local\Temp\msohtmlclip1\01\clip_image153.gif

    and

    File:/C:\Users\DELMAR~1\AppData\Local\Temp\msohtmlclip1\01\clip_image155.gif.

    The contour plots below represent the exact solutions for different values of R:

    img2.gif img3.gifimg4.gif img5.giflec2_ecurve.jpg

    A plot of the energy of the system as a function of R is shown below:


    This page titled 1: The simplest chemical bond: The \(H_2^+\) Ion is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Mark E. Tuckerman.

    • Was this article helpful?